cho tam giác abc vuông tại a đường cao ah trên bc lấy d khác h . tính ab ac ah biết hb=1.8 hc=3.2 .kẻ dm vuông góc với ab tại m dn vuông góc với ac tại n chứng minh bm.cn=dm.dn
Cho tam giác ABC vuông tại A, đường cao AH, AC=16cm, HB=7,2cm. Tính AH, AB, BC, HC
Cho tam giác ABC vuông tại A kẻ AH vuông góc với BC . CMR
a/AH+BC=\(\dfrac{HB.AB-HC.AC}{AB-AC}\)
b/BC-AH=\(\dfrac{HB.AB+HC.AC}{AB+HC}\)
c/\(\sqrt[3]{AB^2.HB^2}+\sqrt[3]{AC^2.HC^{2^{ }}}=\sqrt[3]{BC^4}\)
Cho tam giác vuông ABC vuông tại a AB bé hơn AC có đường cao AH (H thuộc BC) AB = 3 BH =1,8 A) tính BC AH AC B) kẻ HD vuông AC (D thuộc AC) chứng minh HC = AD.AC/HB C) gọi e là điểm đối xứng với H qua AB. Chứng minh S tam giác AED = sin²AHD . S tam giác ACE
Bài 1: Cho (ABC vuông tại A, đường cao AH. Trong các đoạn thẳng sau AB, AC, BC, AH, HB, HC hãy tính độ dài các đoạn thẳng còn lại nếu biết:
a) AB = 6 cm ; AC = 9 cm.
b) AB = 15 cm ; HB = 9 cm.
c) AC = 44 cm ; BC = 55 cm.
d) AC = 40 cm ; AH = 24 cm.
e) AH = 9,6 cm ; HC = 12,8 cm.
f) CH = 72 cm ; BH = 12,5 cm.
g) AH = 12 cm ; trung tuyến AM = 13 cm.
Cho tam giác ABC vuông tại A có AB= 16cm ;AC =12cm, đường cao AH. Trên tia đối của tia CB lấy điểm E. Vẽ HN vuông góc với AE tại N. a) Tính BC; AH;HB và số đo góc B b) Chứng minh AN.AE = HB .HC c) Vẽ HM vuông góc với AB tại M. Chứng minh :AE = 3 AM biết rằng BE =3 MN
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Cho ∆ABC vuông tại A có đg cao AH. Trong các đoạn thẳng sau:AB,AC,BC,AH,BH,HC, hãy tính các đoạn thẳng còn lại nếu biết: a)AB=6cm,BC=10cm b)AC=20cm,BC=25cm c)AB=12cm,AC=16cm d)BH=9cm,HC=6cm
Cho ∆ABC vuông tại A , đường cao AH , biết AB = 9cm , AC = 12cm .Tính BC ,AH , HB , HC .
a) Tính gốc B.
b) Tính diện tích ∆AHC.
c) Gọi M là chung điểm của BC . Đường thẳng vuông góc của BC tại M cắt AC tại D . Chứng Minh : 2AC.DC = BC2