1) Cho ba số a, b, c \(\in\) [0;1] (nghĩa là từng số lớn hơn hoặc bằng 0 và bé hơn hoặc bằng 1). Chứng minh rằng: \(ab\le a^ab^b\).
2a0 Cho a, b, c, thỏa mãn \(a+b+c=1\). Chứng minh rằng: \(\dfrac{1}{3^a}+\dfrac{1}{3^b}+\dfrac{1}{3^c}\ge3\left(\dfrac{a}{3^a}+\dfrac{b}{3^b}+\dfrac{c}{3^c}\right)\)
cho a,b,c khác 0 thỏa mãn abc=1và \(\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{a^3}=\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\) chứng minh rằng 1 trong ba số là lập phương của 1 trong 2 số còn lại
CMR: Nếu a, b,c là 3 số thỏa mãn: \(a+b+c=2013\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2013}\) thì 1 trong 3 số phải có 1 số bằng 2013
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho 3 số dương a,b,c có tổng bằng 1. Chứng minh rằng : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Cho a,b,c > 0 chứng minh \(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho 3 số a, b, c > 0. Chứng minh rằng:
\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
Cho 3 số dương a, b, c thỏa mãn: ab+bc+ca=3. Chứng minh: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)