\(A=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+..........+\frac{1}{8}.\frac{1}{9}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{8.9}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.......+\frac{1}{8}-\frac{1}{9}=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(B=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+....+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{10.11}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-.....+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
\(\text{c,d cơ bản tự làm nha }\)
A=>1.1/2.3+1.1/3.4+1.1/4.5+1.1/5.6+1.11/6.7+.1/7.8+1.1/8.9
=>1/2.3+1/3.4+1/4.5+1/6.7+1/7.8+1/8.9
=>1/2-1/3-1/4-1/5-1/6-1/7-1/8-1/9
=>1/2-1/9=>9/18-2/18=>7/18
Vậy A= 7/18