Ta có :\(A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:0,5+2:\left(-0,4\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)
\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:\frac{1}{2}+2:\left(-\frac{2}{5}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}.2+2.\left(-\frac{5}{2}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+...+1000\right).\left\{2.\left(\frac{2}{5}-\frac{5}{2}\right)\right\}.\left(5+10+...+1000\right)\)
\(\Leftrightarrow A=\left(5+10+...+1000\right).\left(5+10+...+1000\right).-\frac{21}{10}\)
Ta có : Số số hạng của dãy số : \(5+10+...+1000\) là :
\(\left(1000-5\right):5+1=200\)
\(\Rightarrow\) Tổng của dãy số : \(5+10+...+1000\) là :
\(\frac{\left(5+1000\right).200}{2}=100500\)
\(\Rightarrow A=100500.100500.\left(-\frac{21}{10}\right)\)
\(\Rightarrow A=100500^2.\left(-\frac{21}{10}\right)\)
\(\Rightarrow A=\frac{100500^2.\left(-21\right)}{10}\)
Vậy :\(A=\frac{100500^2.\left(-21\right)}{10}\)
P/s: Số to quá nên mình đề dưới dạng phân số, không tính ra kết quả cụ thể.