rút gọn biểu thức:
\(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
Bạn nào trả lời bài này thì ghi luôn cách làm giúp mình nhé!
Rút gọn:
a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
b) \(B=1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\)
Mọi người giúp em với ạ. Em cám ơn nhiều.
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn A.
b) Tìm x để P=2A - \(\dfrac{1}{x}\)đạt GTLN.
Rút gọn biểu thức:
a, \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
b, \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
rút gọn biểu thức A=\(\dfrac{\left(2-\sqrt{a}\right)-\left(\sqrt{a+3}\right)}{1+2\sqrt{a}}\) (với a>0) ; B=\(\dfrac{1}{1-\sqrt{2}+\sqrt{3}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\); C=\(\dfrac{1}{\sqrt{5-2}}+\dfrac{1}{\sqrt{5+\sqrt{2}}}\)
Cho A=\(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\times\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a) Rút gọn A
b) Tìm a để A=\(\dfrac{\sqrt{6}}{1+\sqrt{6}}\)
c) CMR: A>\(\dfrac{2}{3}\)
Rút gọn biểu thức:
\(\dfrac{\sqrt{a-2}+2}{3}\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)
\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
1) Rút gọn
2) Với gtri nào của a thì P=7
3) Với gtri nào của a thì P>6
Rút gọn các biểu thức:
A= \(\dfrac{3\left(\sqrt{ab}-b\right)}{a-b}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}\)
B= \(\dfrac{1}{a^2-\sqrt{a}}:\dfrac{\sqrt{a}+1}{a\sqrt{a}+a+\sqrt{a}}\)
E= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)