1, cho a,b là số thực thỏa 0<a<1 ; 0<b<1 ; a khác b ; và \(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\)
tính giá trị biểu thức Q= \(\sqrt{a^2+b^2}+2019\)
2 Tìm nghiệm nguyen pt \(x^2-4xy+5y^2=2\left(x-y\right)\)
3. cho a,b,c>0 chứng minh \(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Xác định gt các bt sau:
\(a.A=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right),y=\frac{1}{2}\left(b+\frac{1}{b}\right)\) (a>1; b>1)
\(b.B=\frac{\sqrt{a+bx}+\sqrt{a-bx}}{\sqrt{a+bx}-\sqrt{a-bx}}\) với \(x=\frac{2am}{b\left(1+m^2\right)},\left|m\right|< 1\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Cho a,b,c thỏa mãn\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\) .
Tính M=\(\frac{a^{2017}+b^{2018}+c^{2918}}{a^{2017}b^{2018}c^{2019}}\)
1 Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)(0<x≠1)
a) Rút gọn
b) Tính GTLN của Q=\(P-9\sqrt{x}+2019\)
2
a) Giải pt: \(x-1+4\sqrt{4-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}\)
b) Cho a,b số thực a≠0
CM: \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{a}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
c) Cho a, b, c là 3 số dương
CM: \(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^1+8ac\right)}+\frac{1}{c\left(c^2+8ab\right)}\le\frac{3}{3abc}\)
Dấu "=" xảy ra khi nào?
4
a) Tìm các số tự nhiên n sao cho n-50 và n+50 đều là số chính phương
b) Tìm số nguyên P,q sao cho
\(P^2=8q+1\)
5 Giải pt \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)
6 Cho 3 số thực x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge z\)
Tìm GTNN của P=xyz
1/ a/ cho A= \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)
Tính A khi \(x=\frac{2}{2+\sqrt{3}}\)
b/ cho a,b,c là các số thức khác 0 thỏa mãn a+b+c=0 .cmr : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
2/
a/ tìm tất cả các số tự nhiên sao cho \(n^2-14n-256\) là 1 số chính phương
b/ cho a>0 ,b>0 và ab=1. tìm GTNN của biểu thức : A =\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
Bài 1: a Tìm các giá trị nguyên dương (x;y) của pt \(x^2+x+13=y^2\) b cho 3 số nguyên dương a,b,c thảo mãn a>1 và \(2^a=b^c+1\) chứng minh c=1
Bài 2 : a giai pt sau \(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\) b giải hệ pt sau : \(\left\{{}\begin{matrix}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{matrix}\right.\)
Bài 3 : cho 3 số thực dương a,b,c thỏa mãn a+b+c =3 CMR \(\frac{a}{ab+3c}+\frac{b}{bc+3a}+\frac{c}{ca+3b}\ge\frac{3}{4}\)
1. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^2\left(1+a\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{3\sqrt{2}}{8}\)
2. \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le1\end{matrix}\right.\). Cmr: \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ac\left(a+c\right)}\ge\frac{87}{2}\)
3. \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=2abc\end{matrix}\right.\). Cmr: \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\ge\frac{1}{2}\)
4. \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2015\end{matrix}\right.\). Tìm min \(A=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^2+x^2}\)
Mn giúp mk với ạ! Thanks nhiều
1 cho tam giác ABC có các cạnh thỏa mãn a≤b≤c CMR \(\left(a+b+c\right)^2\) ≤9ab
2 Giải pt \(x\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=6\)