a) \(\begin{array}{l}A = \dfrac{{2{{\rm{x}}^2} + 1}}{{{x^3} + 1}} + \dfrac{{1 - x}}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\\A = \dfrac{{2{{\rm{x}}^2} + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} + \dfrac{{\left( {1 - x} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \dfrac{{{x^2} - x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \dfrac{{2{{\rm{x}}^2} + 1 + 1 - {x^2} - {x^2} + x - 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{{1 + x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{1}{{{x^2} - x + 1}}\end{array}\)
b) Với x = -3 ta thay vào biểu thức A đã rút gọn ta được:
\(A = \dfrac{1}{{{{\left( { - 3} \right)}^2} - \left( { - 3} \right) + 1}} = \dfrac{1}{{9 + 3 + 1}} = \dfrac{1}{{13}}\)