a)Chứng minh rằng \(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2=1\)với \(x\ge0\)và \(x\ne1\)
b)So sánh \(\sqrt{2012}-\sqrt{2011}\)và \(\sqrt{2011}-\sqrt{2010}\)
c)Rút gọn biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\) với \(x\ge0,y\ge0,x\ne y\)
d)Tìm giá trị lớn nhất của biểu thức M=\(\sqrt{x-1}+\sqrt{9-x}\)
Cho biểu thức : \(P\left(x\right)=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}.\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}+1\right)\) , với \(x\ge0;x\ne1\)
a. Rút gọn biểu thức P(x).
b. Tìm x để : \(2x^2+P\left(x\right)\le0\)
1 . Rút gọn biểu thức
A= \(\frac{1}{2}\sqrt{8}+\frac{\sqrt{6}-\sqrt{10}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{88}}{\sqrt{22}}-2\sqrt{\frac{1}{2}}\)
2. Cho biểu thức :
P = \(\left(\frac{1}{\sqrt{x}+1}+\frac{x+\sqrt{x}+2}{x-1}\right):\frac{1}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\)
a, Chứng minh P =\(\sqrt{x}+1\)
b, Tìm giá trị của x để P = 2
các bạn ơi ! giúp mik với đi !!
Cho biểu thức:
A=\(\left(\frac{2\sqrt{x}}{\sqrt{x^3}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(2+\frac{2\sqrt{x}}{x+1}\right)\), với \(x\ge0\); \(x\ne1\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để \(A\le0\)
Rút gọn
A=\(\left[\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x-2\sqrt{x}+1}\right]\frac{x\sqrt{x}-x-\sqrt{x}+1}{\sqrt{x}}\)
Điều kiện \(x\ge0;x\ne1\)
Cho biểu thức \(G=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}-\frac{2\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)\) \(\left(x>0,x\ne1\right)\)
a. Rút gọn biểu thức G
b. Tìm x để G = 2
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\)-\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(\(a\ge0\),\(b\ge0\),\(a\ne b\))
b)\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)\(\left(a>0,b>0,a\ne b\right)\)
C)\(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)\(\left(a>0,a\ne1,a\ne4\right)\)
d)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)\(\left(a>0,b>0,a\ne b\right)\)
e)\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right)\):\(\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)\(\left(x>0,x\ne9\right)\)
\(A=\left(\frac{\sqrt{x}-2}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{x-4\sqrt{x}-9}{9-x}\right):\frac{\sqrt{x}+5}{3-\sqrt{x}}\)với \(x\ge0,x\ne9\)
a, Rút gọn
b, Tìm x để A = 1
c, Tìm x để \(\left|A\right|< \frac{1}{2}\)
1. Cho
A= \(\sqrt{\frac{x\sqrt{x}+1}{\sqrt{x}+1}+\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}}với\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
a) Rút gọn A
b) Tính giá trị của biểu thức X= M + \(\frac{2012}{2013}\) biết x= \(1+2012^2+\frac{2012^2}{2013^2}\)