a,
\(\left(25^6-15^6-10^6\right):5^6\\ =\left[\left(5\cdot5\right)^6-\left(3\cdot5\right)^6-\left(2\cdot5\right)^6\right]:5^6\\ =\left(5^6\cdot5^6-3^6\cdot5^6-2^6\cdot5^6\right):5^6\\ =5^6\left(5^6-3^6-2^6\right):5^6\\ =5^6-3^6-2^6\\ =15625-729-64\\ =14896-64\\ =14832\)
b,
\(1+2+2^2+...+2^{100}\\ =1\cdot\left(1+2+2^2+...+2^{100}\right)\\ =\left(2-1\right)\left(1+2+2^2+...+2^{100}\right)=\left(2-1\right)\cdot1+\left(2-1\right)\cdot2+\left(2-1\right)\cdot2^2+...+\left(2-1\right)\cdot2^{100}\\ =2-1+2^2-2+2^3-2^2+...+2^{101}-2^{100}\\ =2^{101}-1\)
B) 1+2+22+23+....+2100
Tính B vs B=1+2+22+23+....+299+2100
=>2B=22+23+24+...+2100+2101
=.2B-B=(2+22+23+24+...+299+2100
B=2101-1
=>B=2101-1