a: \(\dfrac{-3x^3+5x^2-9x+15}{-3x+5}\)
\(=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)
\(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
b: \(x^3-3x^2-4x+t⋮x^2+x+1\)
\(\Leftrightarrow x^3+x^2+x-4x^2-4x-4-x+t+4⋮x^2+x+1\)
=>t+4-x=0
hay t=x-4
a: \(\dfrac{-3x^3+5x^2-9x+15}{-3x+5}\)
\(=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)
\(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
b: \(x^3-3x^2-4x+t⋮x^2+x+1\)
\(\Leftrightarrow x^3+x^2+x-4x^2-4x-4-x+t+4⋮x^2+x+1\)
=>t+4-x=0
hay t=x-4
a) Làm phép tính \(\left(15+5x^2-3x^2-9x\right):\left(5-3x\right)\)
b) t bằng mấy để \(x^3-3x^2+t-4x⋮\left(1+x+x^2\right)\)
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
Tìm x, biết :
a, \(\left(3x+2\right).\left(6x-2\right)-\left(9x-2\right).\left(2x+1\right)=24\)
b, \(\left(4x+3\right)\left(3x-2\right)-\left(6x-1\right)\left(2x+3\right)=16\)
c, \(\left(5x-2\right)\left(4x+5\right)+\left(10x-7\right)\left(5-2x\right)=12\)
d, \(6x\left(3-4x\right)+8x\left(3x-2\right)=16\)
Rút gọn các biểu thức :
a, \(\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)\)
b, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(c,\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
1. \(\frac{1}{2}x^2-\left(\frac{1}{2}x-4\right)\frac{1}{2}x=-14\)
2. \(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)
3. \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
4. \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
5. \(\left(-2+x^3\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
1, Tính
a) \(\dfrac{3x^2-5}{x^2-5x}+\dfrac{5-15x}{5x-25}\)
b) \(\dfrac{4+x^3}{x-3}-\dfrac{2x+2x^2}{x-3}+\dfrac{2x-13}{x-3}\)
c) \(\dfrac{2}{x-5}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)
d) \(\dfrac{2x+8}{x^2-12+1}+\dfrac{7}{x-2}\)
2. Tính giá trị biểu thức
A= \(2\left(x+1\right)+\left(3x+2\right)\left(3x-2\right)-9x^2\)
tại \(x=15\)
Tìm a để kết quả lè phép chia hết: \(\left(3x^3+4x^2-7x+a\right):\left(3x-2\right)\)
Tìm x nguyên để: \(\left(3x^3+4x^2-7x+5\right)⋮\left(3x-2\right)\)
Xác định a sao cho: \(\left(x^2-2x-a\right)⋮\left(x+1\right)\)
Mk đang cần rất gấp đó mọi người!!! Help me, please!!!
Câu 1: Tính
a. \(-2x^2+3\left(x^2+xy+2\right)\)
b. \(xy^2-y^2\left(x-2+3x^2\right)\)
Câu 2: Tìm x
a. \(3\left(5x-1\right)-x\left(x+1\right)+x^2=14\)
b. \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)
Câu 3: \(A=\frac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)-7x\)
Chứng minh biểu thức A không phụ thuộc vào biến.
Tìm \(x\)
a) \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)