Cho Δ\(ABC\) vuông tại \(A\) , đường cao \(AH\) . Gọi \(E\) ,\(F\) lần lượt là các hình chiếu của \(H\) trên \(AB\) và \(AC\) . CMR:
\(a\)) \(AE.AB=AF.AC\)
\(b\)) \(\dfrac{BF}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
\(c\)) \(BC.BE.CF=AH^3\)
cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{3}{4}\)và AB+AC=21cm.
a) Tính AB, AC, BC
b) Tính AH, BH, CH
Cho ΔABC vuống tại A, đường cao AH. Cho \(\dfrac{AB}{AC}\)=\(\dfrac{1}{4}\) và AH 2√37x. Tính BC, BH, CH?
Cho ΔABC vuông tại A , đường cao AH . Trong các đoạn thẳng sau AB , BC , AC , AH , BH , CH hãy tính độ dài các đoạn thẳng còn lại nếu biết :
a)AB=6cm;AC=9cm
b)AB=15cm;HB=9cm
c)AC=44cm;BC=55cm
d)AC=40cm;AH=24cm
e)AH=9,6cm;HC=12,8cm
f)CH=72cm;BH=12,5cm
g)HA=12cm,trung tuyến AM=13cm
Giải giúp mk vs ạ!!!
cho tam giác ABC biết \(\dfrac{AB}{AC}\)=\(\dfrac{3}{2}\). Tính BH CH biết đường cao AH=36cm
cho △ABC⊥A, đường cao AH, D và E lần lượt là hình chiếu của H trên AB, AC. chứng minh
a)\(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
b)\(\dfrac{CE}{BD}=\left(\dfrac{CA}{AB}\right)^3\)
c)\(AH^3=BC.BD.CE\)
d)\(3AH^2+BD^2+CE^2=BC^2\)
lm nhanh giúp mk nhé! Mk đang càn gấp lắm!
Các bạn có thể phát biểu = lời định lý sau đc ko.
Cho tam giác ABC có 3 đường cao lần lượt là AH,BK,CF
Ta luôn có\(\left\{{}\begin{matrix}AH=\dfrac{BC\cdot\sin B\cdot\sin C}{\sin B+\sin C}\\BK==\dfrac{CA\cdot\sin C\cdot\sin A}{\sin C+\sin A}\\CF==\dfrac{AB\cdot\sin A\cdot\sin B}{\sin A+\sin B}\end{matrix}\right.\)
Cho △AB ⊥ A, đường cao AH, D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh
a) AD.AB=AE.AC
b) DE.BC=AB.AC
c) HB.HC=DA.DB+EA.EC
d) \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
e) \(\dfrac{CE}{BD}=\left(\dfrac{CA}{CB^{ }}\right)^3\)
f) \(AH^3=BC.BD.CE\)
g) \(3AH^2+BD^2+CE^2=BC^2\)
Lm nhanh giúp mk nhé! Mk đang cần gấp
Đề bài: Cho tam giác ABC vuông tại A, đường cao AH. Tính độ dài các cạnh còn lại của tam giác ABC trong mỗi trường hợp sau:
a. AB = a, AH = \(\dfrac{a\sqrt{3}}{2}\)
b. BC = 2a, HB = \(\dfrac{1}{4}BC\)
c. AB = a, CH = \(\dfrac{3}{2}a\)
d. CA = \(a\sqrt{3}\), AH = \(\dfrac{a\sqrt{3}}{2}\)
Giúp mình với ạ, mình cảm ơn trước.