Điều kiện xác định: \(x\ne0;x\ne\pm2\)
\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)
\(A=\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)
\(A=\left(\frac{x+2+2x+x-2}{x^2-4}\right)\left(\frac{2-x}{x}\right)\)
\(A=\frac{-4x}{4-x^2}.\frac{2-x}{x}=\frac{-4}{x+2}\)
\(2x^2+x=0\Rightarrow x\left(2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-\frac{1}{2}\end{matrix}\right.\)
Với \(x=-\frac{1}{2}\Rightarrow A=-\frac{4}{x+2}=-\frac{4}{2-\frac{1}{2}}-\frac{8}{3}\)