a) Giá trị gần đúng của \(1,{05^4}\) là: \({1^4} + {4.1^3}.0,05 = 1,2\)
b) \(1,{05^4} = 1,2155\)
Sai số tuyệt đối là: 1,2155 - 1,2 = 0,0155
a) Giá trị gần đúng của \(1,{05^4}\) là: \({1^4} + {4.1^3}.0,05 = 1,2\)
b) \(1,{05^4} = 1,2155\)
Sai số tuyệt đối là: 1,2155 - 1,2 = 0,0155
a) Dùng hai số hạng đầu tiên trong khai triển của \({(1 + 0,02)^5}\) để tính giá trị gần đúng của \(1,{02^5}\).
b) Dùng máy tính cầm tay tính giá trị của \(1,{02^5}\) và tính sai số tuyệt đối của giá trị gần đúng nhận được ở câu a.
Tìm hệ số của \({x^4}\) trong khai triển của \({(3x - 1)^5}.\)
Hãy vẽ sơ đồ hình cây của khai triển \({(a + b)^4}\) được mô tả như Hình 8.9. Sau khi khai triển, ta thu được một tổng gồm \({2^4}\) (theo quy tắc nhân) đơn thức có dạng x. y. z. t, trong đó mỗi x, y, z, t là a hoặc b. Chẳng hạn, nếu x, y, t là a, còn z là b thì ta có đơn thức a. a. b. a, thu gọn là \({a^3}b\). Để có đơn thức này, thì trong 4 nhân tử x, y, z, t có 1 nhân tử là b, 3 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_4^1\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau.
\({a^4};\quad {a^3}b;\quad {a^2}{b^2};\quad a{b^3};\quad {b^4}?\)
Hãy cho biết các đơn thức còn thiếu (...) trong sơ đồ hình cây (H 8.7) của tích (a+b).(a+b).(a+b).
Có bao nhiêu tích nhận được lần lượt bằng \({a^3},{a^2}b,a{b^2},{b^3}?\)
Hãy so sánh chúng với các hệ số nhận được khi khai triển \({(a + b)^3}.\)
Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
b) Với \(r = 1,5\% \), dùng hai số hạng đầu trong khai triển của \({(1 + 0,015)^5},\) hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người)
Khai triển các đa thức:
a) \({(x - 3)^4};\)
b) \({(3x - 2y)^4};\)
c) \({(x + 5)^4} + {(x - 5)^4};\)
d) \({(x - 2y)^5}\)
Khai triển \({(x - 2)^4}\)
Tương tự như HĐ3, sau khi khai triển \({(a + b)^5}\), ta thu được một tổng gồm \({2^5}\) đơn thức có dạng x. y. z. t. u, trong đó mỗi kí hiệu x, y, z, t, u là a hoặc b. Chẳng hạn, nếu x, z là a, còn y, t, u là b thì ta có đơn thức a. b. a. b. b, thu gọn là \({a^2}{b^3}\). Để có đơn thức này, thì trong 5 nhân tử x, y, z, t, u có 3 nhân tử là b, 2 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_5^3\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau.
\({a^5};{a^4}b;{a^3}{b^2};{a^2}{b^3};a{b^4};{b^5}?\)
Khai triển \({(3x - 2)^5}\)