a. \(\dfrac{32}{2^n}=2\)
\(\Leftrightarrow2^n.2=32\)
\(\Rightarrow2^{n+1}=2^5\)
\(\Rightarrow n+1=5\)
\(\Rightarrow n=4\)
Vậy...
b. \(16^n:2^n=8\)
\(\Rightarrow\left(2^4\right)^n:2^n=2^3\)
\(\Rightarrow4n-n=3\)
\(\Rightarrow3n=3\)
\(\Rightarrow n=1\)
Vậy...
c. \(\dfrac{\left(-3\right)^n}{81}=\left(-27\right)\)
\(\Leftrightarrow\left(-3\right)^n=81.\left(-27\right)\)
\(\Rightarrow\left(-3\right)^n=\left(-2187\right)\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Rightarrow n=7\)
Vậy...
a, \(\dfrac{32}{2^n}\) =2 =>25=2n+1=>5=n+1=>n=4
b, 24n:2n=23=>23n=23=>3n=3=>n=1
c, \(\dfrac{\left(-3\right)^n}{81}\)=(-27)=>(-3)n=34 . (-3)3=>n=7