đkxđ:....
Rút gọn:
\(\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left(\dfrac{x^2-8\sqrt{x}}{x+2\sqrt{x}+4}+1\right)-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\dfrac{\sqrt{x}\left(\sqrt{x}^3-8\right)}{x+2\sqrt{x}+4}+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}\cdot\left[\sqrt{x}\left(\sqrt{x}-2\right)+1\right]-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{2\left(\sqrt{x}-1\right)}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{2}-\dfrac{x-\sqrt{x}-1}{2\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x+\sqrt{x}+1}{2\sqrt{x}}\)
\(=\dfrac{x-\sqrt{x}-x+\sqrt{x}+1}{2\sqrt{x}}=\dfrac{1}{2\sqrt{x}}\)