b) Tìm các số nguyên x, y thoả mãn: |x - 5| .y + |x - 5| - 13 = 0
=> |x - 5| .y + |x - 5| = 0+ 13
=> |x - 5| .y + |x - 5| = 13
=> |x - 5| .y + |x - 5|.1= 13
=> | x-5| .( y+1)= 13
=> |x-5| .y= 14
=> \(\left\{{}\begin{matrix}\left|x-5\right|.y=14\\\left|x-5\right|.y=14\\\left|x-5\right|.y=14\\\left|x-5\right|.y=14\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-5\right|=1\Rightarrow y=14\\\left|x-5\right|=14\Rightarrow y=1\\\left|x-5\right|=2\Rightarrow y=7\\\left|x-5\right|=7\Rightarrow y=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left|x-5\right|=1\Rightarrow y=14\\\left|x-5\right|=14\Rightarrow y=1\\\left|x-5\right|=2\Rightarrow y=7\\\left|x-5\right|=7\Rightarrow y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5=\pm1\\x-5=\pm14\\x-5=\pm2\\x-5=\pm7\end{matrix}\right.\)
* x-5= 1
=> x= 6
* x-5= -1
=>x= 4
* x-5= -14
=> x= -9
*x-5= 2
=> x=7
* x-5= -2
=> x= 3
*x-5= 7
=> x= 12
*x-5= -7
=> x= -2
a)
Gọi UC(30n-7;18n-5) là d
\(\Rightarrow\left\{{}\begin{matrix}30n-7⋮d\\18n-5⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}90n-21⋮d\\90n-25⋮d\end{matrix}\right.\\ \Rightarrow\left(90n-21\right)-\left(90n-25\right)⋮d\\ \Rightarrow4⋮d\)
ĐỀ có sao ko!!