Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Trên cạnh AB lấy điểm M sao cho AM = 2cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N. a) Tính độ dài các đoạn thẳng MN, NC. b) Lấy điểm I bất kỳ trên cạnh BC (I khác B, C). Vẽ điểm O trên đoạn AI sao AI = 3AO. Chứng minh ba điểm M, N, O thẳng hàng.
a)Qua điểm M thuộc cạnh BC của tam giác ABC,vẽ các đường thẳng song song với hai cạnh kia,chúng cắt AB,AC theo thứ tự ở H,K.Chúng minh rằng AH/AB+AK/AC không phụ thuộc vào vị trí của điểm M trên cạnh BC.
b) Xét trường hợp tương tự khi điểm M chạy trên đường thẳng BC nhưng không thuộc đoạn thẳng BC.
6*. Cho tam giác ABC có AM là trung tuyến và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với
AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB, cắt AC ở F. Chứng minh CF=DK.
7*. Cho tam giác ABC nhọn, M là trung điểm của BC và H là trực tâm. Đường thẳng qua H và vuông góc với MH cắt
AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự ở N và D. Chứng
minh:
a) NC=ND . b) HI=HK
8*. Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt
BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ qua F song song với BD cắt CD ở G. Chứng
minh AH.CD=AD.CG.
Bài 1: Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho DB/DC = 1/2. Đường thẳng qua D song song với AB cắt AC tại E; Đường thẳng qua D song song AC cắt AB tại Fa) So sánh các tỉ số AF/AB; AE/AC.
b) Gọi M là trung điểm của AC. CMR: EF// BM.
1.Hinh thang ABCD đáy lớn ;CD. Qua A vẽ đường thẳng AK // BC cắt BD tại E. Qua B vẽ đường thẳng BI // AD cắt AC tại F ( K; I thuộc CD). CMR
a, EF//AB
b, \(_{AB^2}\)=CD.EF
2. Cho 1 điểm M nằm tring tam giác ABC. Đương thẳng qua M và trọng yaam G của tam giác cắt BC , CA và AB theo thứ tự D,E,F. CMR \(\frac{MD}{GD}+\frac{ME}{GE}+\frac{MF}{GF}=3\)
3.Cho tam giác ABC cân tại A. Hai điểm D và E theo thứ tự thay đổi trên AB và BC. Kẻ DF vuông góc BC. CMR: nếu EF=\(\frac{BC}{2}\)thì đường thẳng qua E và vuông góc với DE luôn đi qua I diểm cố định.
4. Cho tam giác ABC trọng tâm G , đường thẳng d qua G cắt các cạnh AB và AC tại M<N. CMR:AM.AN=AM.NC+AN.MB
5. Cho tam giác Abc vuông tại A. Giả sử đường cao AH , trung tuyến BM, và phân giác trong CN đồng quy. CMR BH=AC
6. CHo tâm giác ABC. AM, AN và CP cắt nhau tại I. TÌm I để\(\frac{AI}{IM}+\frac{BI}{IN}+\frac{CI}{IP}\) nhỏ nhất
7. Cho tứ giác ABCD. Đường thẳng A// BC tại P và đường thẳng qua B// AD cắt AC ở Q.CMr PQ//CD
1.Cho tam giác ABC, D là điểm trên AC sao cho AB=CD. Gọi M,N lần lượt là trung điểm của AD, BC. Chúng minh rằng MN song song với phân giác của góc BAC.
2. Cho tam giác ABC, đường phân giác AD, trung tuyến AM. Đường thẳng đi qua D, song song với AB, cắt AM tại I. BI cắt AC tại E. Chứng minh AB=AE.
1, cho G là trọng tâm tam giác ABC. Qua G vẽ đường thẳng song song với Ab cắt BC tại . CMR: BD=\(\frac{1}{3}BC\)
2, Cho hình bình hành ABCD, đường thẳng d cắt cạnh AB, AD và đường chéo AC lần lượt tại E,F,O.CMR\(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
3, Cho tam giác ABC có AM là đường trung tuyến. N là điểm trên đoạn thẳng A. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. CMR: \(\frac{AD}{BD}=\frac{AE}{CE}\)
4, Cho tam giác ABC, D là một điểm trên cạnh AB. Biết AD=8cm, DB=4cm. Tính khoảng cách từ điểm B và D đến cạnh AC, cho biết tổng các khoảng cách đó bằng 15cm
MN GIÚP MK VỚI AK