bạn vào câu hỏi tương tự á, hình như mình có giải rồi!!!
bạn vào câu hỏi tương tự á, hình như mình có giải rồi!!!
Cho hình bình hành ABCD có AB > CD. Lấy E thuộc AB. Đường ED keí dài cắt BC tại K. Chứng minh:
a) CM: tam giác ADE đồng dạng tam giác BKE và EA.EK= EB.ED
b) CM: tam giác ADE đồng dạng tam giác CKD và CB.kd = DE.CK
câu 6. cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AC, gọi E là điểm đối xứng với H qua AB. chứng minh
a/ D đối xứng với E qua A
b/ tam giác DHE vuông
c/ tứ giác BDEC là hình thang vuông
d/ BC= BD+CE
cố giúp mình nhé. cần gấp. không cần vẽ hình đâu, giải thui, mình vẽ được hình rồi
cho tam giác abc cân tại A ,đương trung tuyến AM .Goi I là trung điểm của AC, K là điểm đối xứng với M qua I.
a) Chứng minh rằng tứ giác AMKC là hình chữ nhật
b)Tính diện tích của hinh chữ nhật AMKC biết AB=10cm, BC=10cm
c) Tim điều kiện của tam giác ABC để tứ giác AMKC là hình vuông
cho tam giác ABC (AB<AC); đường cao AH . Gọi M , N,D là trung dểm của AB, AC, BC . Chứng minh
a) tứ giác MNBD là hình bình hành
b) H đối xứng vs A qua MN
c) tứ giác MNDH là hình thang cân
Cho tam giác abc , góc a=90 độ, đường cao ah. d và e lần lượt là chân đường vuông góc hạ từ d xuống ab và bc
a) c/minh de=ah
b) m,n lần lượt là tđ bh,hc.C/minh dmne là hình thang vuông
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HD vuông góc AB và HE vuông góc với AC
1.CMR: AH=DE
2. P và Q lần lượt là trung điểm của BH và CH. CMR: DEQP là hình thang vuông.
3. O là trực tâm của tam giác ABQ.
4. CMR: SABC = 2SDEQP
Cho tam giác ABC vuông tại A, đường cao AH.
1) Gọi M là điểm nằm giữa B và C. Kẻ MN vuông góc với AB, MP vuông góc với AC ( N thuộc AB , P thuộc AC ). Tứ giác ANMP là hình gì?
2) Tính số đo góc NHP
3) Tìm vị trí điểm M trên BC để NP có độ dài ngắn nhất.
Cho biết tam giác có các cạnh a,b,c thì diện tích S của nó được tính bởi công thức : \(S=\frac{1}{4}\sqrt{\left(a^2+b^2+c^2\right)^2-2\left(a^4+b^4+c^4\right)}\).Tính diện tích tam giác khi :
a ) \(a=b=c\) b ) \(a^2=b^2+c^2\)
Cho hình thoi ABCD có AB=Bd. Qua điểm C vẽ đường thẳng d bất kỳ, đường thẳng này cắt các tia đối của tia BA và DA lần lượt tại E và F. Gọi giao điểm của BF và DE là I
a) Chứng minh tam giác BCE đồng dạng với tam giác DFC
b) Chứng minh tam giác BDE đồng dạng với tam giác DFB
c) Tính số đo góc EIF
Cho tam giác cân A , đg trug tuyến AM.Gọi I là truq điểm AC , K đx với M qua I
a) tứ giác AMCK là hình j ? vì s?
b) ............AKMB là hình j ? vì s?