Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1)
Và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm nghiệm của (1) đồng thời là nghiệm của (2)
Cho 3sin3x-3cos2x+4sinx-cos2x+2=0 (1)
Và cos2x+3cosx(sin2x-8sinx)=0 (2).
Tìm nghiệm của (1) đồng thời là nghiệm của (2)
1> 1 + sinx + cosx + sin2x + cos2x = 0
2> cos2x + 3sin2x + 5 sinx - 3cosx = 3
3> \(\dfrac{\sqrt{2}*(cosx - sinx)}{cotx - 1}\) = \(\dfrac{1}{tanx + cot2x}\)
4> (2cosx - 1)*(2sinx + cosx) = sin2x - sinx
1) 2sinx + cosx = sin2x + 1
2) (1 + cosx)(1+sinx) = 2
3) 3cos4x - 8cos6x + 2cos2x +3 =0
4) sin3x + cos3x.sinx + cosx = \(\sqrt{2}\)cos2x
5) (2cosx -1)(2sinx + cosx) = sin2x - sinx
giải các pt
a) \(sin2x-2\sqrt{3}cos^2x=4cosx\)
b) \(sin^2x-3cos^2x=sinx-\sqrt{3}cosx\)
c) \(sin6x\left(cos3x-1\right)-sin6x.sin3x=0\)
d) \(\left(sin2x-cos2x\right)^2-3\left(sin2x-cos2x\right)-4=0\)
e) \(\frac{sin2x+sin6x}{cos2x}-2cos4x=2\sqrt{2}\)
Giải các phương trình sau:
a) √3.sin2x - cos2x + 1 = 0
b) 3sin4x + 4cos4x = 1
c) sin3x - √3.cos3x = 2cos5x
d) sinx(sinx + 2cosx) = 2
e) √3(sin2x + cos7x) = sin7x - cos2x
a)căn 3 sin4x-cos4x-2cosx=0
b)cosx +căn 3 cos2x-căn 3 sinx-sin2x=0
c)cos 3x+sin2x=căn 3(sin3x+cos2x)
d)cosx +căn 3=3-3/cosx+căn 3 sinx+1
Giair các phương trình sau :
15. \(\sqrt{3}\sin2x+\cos2x=2\cos x-1\)
26 .\(2\sin x^2+\sin7x-1=\sin x\)
7.\(\left(\sin2x+\cos2x\right)\cos x+2\cos2x-\sin x=0\)
Giải phương trình
1,sin3x+cos2x=1+2sinx*cos2x
2,cos5x+cos2x+2sin3x*sin2x=0