\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^{101}-3\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\dfrac{3^{101}-3}{2}\)