a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-3\\x^2+6x+9=21-x^2-4x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-3\\2x^2+10x-12=0\end{matrix}\right.\Leftrightarrow x=1\)
b: \(\left|x^2+5x+4\right|-4=x\)
=>|x^2+5x+4|=x+4
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-4\\\left(x^2+5x+4-x-4\right)\left(x^2+5x+4+x+4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-4\\\left(x^2+4x\right)\left(x^2+6x+8\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;-2;-4\right\}\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\\left(2x^2-5x+4-2x+1\right)\left(2x^2-5x+4+2x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\\left(2x^2-7x+5\right)\left(2x^2-3x+3\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{5}{2};1\right\}\)