\(=2\left(1+2+...+2016\right)+2017\\ =2\cdot\dfrac{\left(2016+1\right)\left(2016-1+1\right)}{2}+2017\\ =2017\cdot2016+2017=2017^2=4068289\)
\(=2\left(1+2+...+2016\right)+2017\\ =2\cdot\dfrac{\left(2016+1\right)\left(2016-1+1\right)}{2}+2017\\ =2017\cdot2016+2017=2017^2=4068289\)
given that m=999...9} 2016 dilgits
n=555...5}2016 dilgits
find the sum of the dilgits in the value m x n
\(A=\dfrac{2016^2+1^2}{2016\cdot1}+\dfrac{2015^2+2^2}{2015\cdot1}+\dfrac{2014^2+3^2}{2014\cdot3}+...+\dfrac{1009^2+1008^2}{1009\cdot1008}\)
và \(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\)Tìm A/B
A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
B=\(\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}+\frac{1}{2017}\)
tính (A-B)^2017
tinh 1+2-3-4+5+6-7-8+9+...+2013+2014-2015-2016
so sanh A va B
A=2017^100 / 1+2017+2017^2+2017^3+...+2017^100
B=2016^100 / 1+2016+2016^2+2016^3+...+2016^100
tính nhanh theo cách hợp lý
50+48+46+.......+4+2-49-47-.......-3-1
2018 - 2017+2016-2015+......+2-1
2018-2017+2016-2015+.....+2-1
bài 1 :
A= 1-2+3-4+5-6+......+999-1000!
B= 2-4+6-8+10-12+......+2016-2018
C= 1-32+33-34+.....+32017
Chứng minh
\(Â=\dfrac{2013}{2013+2014}+\dfrac{2014}{2014+2015}+\dfrac{2015}{2015+2016}+\dfrac{2016}{2016+2017}< 2\)