\(x^2-4=0\Rightarrow x=\pm2\)
Khoảng cách giữa 2 tiệm cận đứng là \(2-\left(-2\right)=4\)
\(x^2-4=0\Rightarrow x=\pm2\)
Khoảng cách giữa 2 tiệm cận đứng là \(2-\left(-2\right)=4\)
73. Khoảng cách giữa 2 đg tiệm cận đứng của đồ thị hs y = \(\dfrac{1}{x^2-4}\) bằng ?
25. Với m là tham số bất kỳ , đồ thị hs y= \(\dfrac{x+1}{\left(m^2+1\right).\sqrt{x^2-4}}\) có tất cả bao nhiêu đường tiệm cận ( tiệm cận ngang và tiệm cận đứng)
47. Số đường tiệm cận đứng của đồ thị hs y =\(\dfrac{\left(\sqrt{x+3}-2\right).sinx}{x^2-x}\)
26. Tìm số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \(\dfrac{\sqrt{x-1}}{x^2-3x+2}\)
Cho hàm số \(y=\frac{x+2}{x-3}\). Tìm trên đồ thị của hàm số điểm M sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang.
Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số :
\(y=\dfrac{2x+3}{2-x}\)
tìm m để đồ thị hàm số \(y=\dfrac{x-m}{x^2+3x+4}\) có đúng 1 đường tiệm cận đứng
83. Biết rằng hs f(x)= ax^3 + bx^2 +cx =d đạt cực đại tại điểm x =3 ,đạt cực tiểu tại điểm x =-2 . Tổng số đg tiệm cận đứng và tiệm cận ngang của đồ thị hs y = \(\dfrac{\left(x-1\right)\left(\sqrt{x+2}\right)}{\sqrt{f\left(x\right)-f\left(1\right)}}\) là?
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!