ĐKXĐ: ....
\(\Leftrightarrow x^2-2x+1-\left(2x-1+4\sqrt{2x-1}+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left(\sqrt{2x-1}+2\right)^2=0\)
\(\Leftrightarrow\left(x+1+\sqrt{2x-1}\right)\left(x-3-\sqrt{2x-1}\right)=0\)
ĐKXĐ: ....
\(\Leftrightarrow x^2-2x+1-\left(2x-1+4\sqrt{2x-1}+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left(\sqrt{2x-1}+2\right)^2=0\)
\(\Leftrightarrow\left(x+1+\sqrt{2x-1}\right)\left(x-3-\sqrt{2x-1}\right)=0\)
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Cho x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính A=(4x5+4x4-x3+1)19+\(\sqrt{4x^5+4x^4-5x^3+5x}\)+\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2019}\)
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
Giải các phương trình sau:
a, \(\left(x-3\right)^2+x^4=-y^2+6y-4\)
b, \(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)
c, \(4+4x-x^2=|x-1|+|x-2|+|2x-3|+|4x-14|\)
d, \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
Giải phương trình vô tỉ:
a) \(4x^2-4x-10=\sqrt{8x^2-6x-10}\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-2x^2\)
c) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
1,giải phương trình:
\(\sqrt{-x^2+4x-3}+\sqrt{2x^2+8x+1}=x^3-4x^2+4x+4\)
2. giải hpt:
\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{matrix}\right.\)
Giai cac pt:
a, \(2x^2-8x+\sqrt{x^2-4x-5}=13\)
b, \(\sqrt{1-x}+\sqrt{4+x}=3\)
c, \(x^3+4x+5=2\sqrt{2x+3}\)
d, \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2-16}\)
e, \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)