\(4+4\cdot5+4\cdot5^2+...+4\cdot5^{100}\\ =4\left(1+5+5^2+...+5^{100}\right)\left(1\right)\)
Đặt \(A=1+5+5^2+...+5^{100}\)
\(\Leftrightarrow5A=5+5^2+...+5^{101}\\ \Leftrightarrow4A=5^{101}-1\\ \Leftrightarrow A=\dfrac{5^{101}-1}{4}\)
Thay vào (1)
\(\left(1\right)=4\cdot\dfrac{5^{101}-1}{4}=5^{101}-1:5^{101}-1=1\)
Vậy \(4+4\cdot5+4\cdot5^2+...+4\cdot5^{100}:5^{101}-1=1\)