\(B=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
(do \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(B=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Chúc bạn học tốt!!!
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..............+\dfrac{1}{99.100}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+................+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=1-\dfrac{1}{100}\)
\(B=\dfrac{99}{100}\)
\(B=\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=1-\dfrac{1}{100}\)
\(B=\dfrac{100}{100}-\dfrac{1}{100}\)
\(B=\dfrac{99}{100}\)
\(B=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{100}\)
\(B=1-\dfrac{1}{100}\)
\(B=\dfrac{99}{100}\)