\(3+2\sqrt{2}=2+2\sqrt{2}+1=2+\sqrt{2}+\sqrt{2}+1\)
\(=\sqrt{2}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)\)
\(=\left(\sqrt{2}+1\right)^2\)
\(3+2\sqrt{2}=2+2\sqrt{2}+1=2+\sqrt{2}+\sqrt{2}+1\)
\(=\sqrt{2}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)\)
\(=\left(\sqrt{2}+1\right)^2\)
1. Thu gọn
a) A=\(\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)
b) B=\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2-\sqrt{3}}}\)
c) C=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
M = \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Tính:
\(\left(\dfrac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{3-2\sqrt{2}}\)
b) \(\sqrt{11+6\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
c) \(\sqrt{2}\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)\)
Thực hiện các phép tính
a) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
b) \(\left(\sqrt{6}+\sqrt{2}\right).\left(\sqrt{3}-2\right)\sqrt{\sqrt{3+2}}\)
c) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
tính
B=\(\sqrt{2+\sqrt{3}}\) . \(\sqrt{2+\sqrt{2+\sqrt{3}}}\) . \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\) . \(\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Bài 1: Tính
\(\sqrt{3+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\\ \sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}\\ \sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}\\ \sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}\\ \sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\\ \sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
Tính
B=\(\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
Tính:
1.\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\) 4.\(\sqrt{\left(\sqrt{3}\right)^2+2.\left(\sqrt{3}\right).\left(1\right)+\left(1\right)^2}\)
2.\(\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}\) 5.\(\sqrt{\left(\sqrt{5}\right)^2+2.\left(\sqrt{5}\right).\left(\sqrt{3}\right)+\left(\sqrt{3}\right)^2}\)
3.\(\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\) 6.\(\sqrt{\left(\sqrt{6}\right)^2-2.\left(\sqrt{6}\right).\left(\sqrt{5}\right)+\left(\sqrt{5}\right)^2}\)
Rút gọn :
\(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)