cho góc xoy khác góc bẹt.Trên cạnh ox lấy hai điểm A và B trên cạnh Oy lấy 2 điểm C và D sao cho OA=OC,OB=OD
a)Chứng minh tam giác OAD=tam giác OCB
b)Chứng minh tam giác ACD=tam giác CAB
cho tam giác ABC có AB=AC và M là trung điểm của BC . Qua B vẽ đường thẳng song song với AM và cắt tia CA tại D
a) Chứng minh tam giác AMB=AMC
b) Chứng minh AM là tia phân giác của BAC
c) Chứng minh ABD = ADB
d) Trên tia đối của tia BC lấy điểm E sao cho BE=BC . Tính số đo EDC khi ACB=50
Bài 13: Cho tam giác ABC có AB = AC, lấy điểm D trên cạnh AB, điểm E trên cạnh AC
sao cho: AD = AE.
a) Chứng minh rằng: BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh: OB = OC
Cho góc nhọn xOy. Trên Ox, Oy lấy tương ứng 2 điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại 2 điểm M và N nằm trong \(\widehat{xOy}\). CMR:
a) \(\Delta OMA=\Delta OMB\) và \(\Delta ONA=\Delta ONB\)
b) 3 điểm O, M, N thẳng hàng
Cho góc xOy (h.73). Vẽ cung tròn tâm O, cung này cắt Ox, Oy theo thứ tự ở A, B ((1)). Vẽ các cung tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau ở điểm C nằm trong góc xOY ((2), (3)). Nối O với C ((4)). Chứng minh rằng OC là tia phân giác của góc xOy ?
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, B sao cho 0 < OA < OB. TRên tia Oy lấy hai điểm C, D sao cho OC = OA, OD = OB. Gọi M là giao điểm của AD và BC, N là giao điểm của OM và BD. Chứng minh rằng :
a) tam giác OAD = tam giác OCB
b) tam giác ABM = tam giác CDM
c) OM là tia phân giác của góc xOy
d) ON vuông góc với BD
Cho góc xOy nhọn. Lấy A thuộc Õ, lấy B thuộc Oy sao cho OA=OB. Vẽ cunh tròn tâm A và Tâm B co cùng bán kính sao cho chúng cắt nhau tạ 2 điểm M và N nằm trong góc xOy. CMR:
a. Tam giác OMA = Tam giác OMB và Tam giác ONA =tam giác ONB
b. 3 điểm O, M, N thẳng hàng
c. Tam giác AMN = Tam giác BMN
d. MN là tia phân giác của góc AMB
Cho tam giác ABC ( AB < AC ) có 0 35 ˆ C = ; B C ˆ 2 ˆ = . Trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC. a) Tính số đo góc A và góc B của ABC b) Chứng minh: ABC = ADE c) Từ A kẻ AH vuông góc với DE và AK vuông góc với BC ( H DE, K BC). Chứng minh: A là trung điểm của đoạn thẳng HK.
Cho góc nhọn xOy. Lấy điểm A thuộc tia Ox, điểm B thuộc tia Oy sao cho OA=OB. Vẽ hai cung tròn tâm A và tâm B có cùng bán kính nhỏ hơn OA sao cho chúng cắt nhau tại hai điểm C và D nằm bên trong góc xOy. Chứng minh rằng:
a. Tam giác AOC = tam giác BOC, tam giác AOD = tam giác BOD
b. Ba điểm O, C, D thẳng hàng