\(\dfrac{27^4\cdot\left(-8\right)^2}{9^5\cdot6^3}=\dfrac{\left(3^3\right)^4\cdot\left(2^3\right)^2}{\left(3^2\right)^5\cdot\left(2\cdot3\right)^3}=\dfrac{3^{12}\cdot2^6}{3^{10}\cdot2^3\cdot3^3}=\dfrac{2^3}{3}=\dfrac{8}{3}\)
\(\dfrac{24^4.\left(-8\right)^2}{9^5.6^3}\)
=\(\dfrac{\left(4.6\right)^4.\left(2^3\right)^2}{\left(3^2\right)^5.6^3}\)
=\(\dfrac{4^4.6^4.2^6}{3^{10}.6^3}\)
=\(\dfrac{2^{14}.6}{3^{10}}\)