\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right).2019=6060\)
<=> x = - 0,208387929
P/s: Số lạ zậy?Đề sai ko