Nhân biểu thức với \(\dfrac{\sqrt{2}}{\sqrt{2}}\) là ra thôi bạn ơi, bài này mình làm nhiều lắm r
\(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
Nhân biểu thức với \(\dfrac{\sqrt{2}}{\sqrt{2}}\) là ra thôi bạn ơi, bài này mình làm nhiều lắm r
\(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\sqrt{2}\)
rút gọn biểu thức
a, \(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}-\dfrac{1}{\sqrt{7+\sqrt{24}+1}}\)
b,\(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
c,\(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4}+\sqrt{7}}+\dfrac{4-\sqrt{7}}{3\sqrt{7}-\sqrt{4}-\sqrt{7}}\)
không dùng máy tính , tính giá trị của các biểu thức sau
1)\(\left(1+\sqrt{2}+\sqrt{3}\right)\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)
2)\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
3)\(\dfrac{2+\sqrt{3}}{\sqrt{7-4\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{7+4\sqrt{3}}}\)
4)\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
5)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
6)\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
a) \(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
b) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
c) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
e) \(\sqrt{9+4\sqrt{5}}\)
f) \(\sqrt{23+8\sqrt{7}}\)
Tính:
a) \(A=\sqrt{8-2\sqrt{15}}\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
b) \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
c) \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}+}\sqrt{3}\right):\sqrt{3}\)
d) \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
Tính:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
Bài 2
a) A= \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(-2\right)^6}-\sqrt{\left(1+\sqrt{2}\right)^2}\)
b) B= \(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}\)
c) C= \(\sqrt{7-4\sqrt{3}}\)
d) D= \(2\sqrt{7+4\sqrt{3}}-\sqrt{13-4\sqrt{3}}\)
e) E= \(\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{81}}\)
Bài 4:
a) \(\sqrt{x-1}=2\)
b) \(\sqrt{x^2-3x+2}=\sqrt{2}\)
c) \(\sqrt{4x+1}=x+1\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
e) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
f)
Bài 1:
a) \(\sqrt{13-2\sqrt{42}}\)
b) \(\sqrt{46+6\sqrt{5}}\)
c) \(\sqrt{12-3\sqrt{15}}\)
d) \(\sqrt{11+\sqrt{96}}\)
Bài 2:
a) \(A=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
b) \(B=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
c) \(C=\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
d) \(D=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
e) \(E=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
g) \(G=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
h) \(H=4x-\sqrt{9x^2-12x+4}\)
i) \(\frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}+\sqrt{2}}+\frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}-\sqrt{2}}\)
B1: tính : A = \(\sqrt{7+4\sqrt{3}}\) + \(\sqrt{7-4\sqrt{3}}\)
B2: cho P= 3x-\(\sqrt{x^2-10x+25}\)
a, rút gọn P
b, tính P khi x=2
B3: rút gọn : M = \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với x khác 1
giúp em zới ạ em cảm mơn nhìu nhìu
C8: chứng minh
a,\(\sqrt{4-2\sqrt{3}}\)-\(\sqrt{3}\)= -1
b, 9+ \(4\sqrt{5}\)= (\(\sqrt{5}\)+2)\(^2\)
c, \(\sqrt{9+4\sqrt{5}}-\sqrt{5}\) =2
d,\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)