Câu 8:
a)
Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)
Ta có: 3>1
\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)
\(\Leftrightarrow\sqrt{3}>1\)
\(\Leftrightarrow\sqrt{3}-1>0\)
\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)
Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)
b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)
\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)
\(=5+4\sqrt{5}+4\)
\(=9+4\sqrt{5}=VT\)(đpcm)
c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)
\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)
d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)
\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)
\(=4+\sqrt{7}-\sqrt{7}\)
\(=4=VP\)(đpcm)