3,\(\lim\limits\frac{3^n-4\times2^{n+1}-3}{3\times2^n+4^n}\)
Dấu ngoặc bạn sử dụng đấu ngoặc trên bàn phím đó, hoặc ô thứ 4 từ phải sang trên cửa sổ gõ công thức
\(lim\left(3^4.2^{n+1}-5.3^n\right)=lim\left[3^n\left(2.3^4\left(\frac{2}{3}\right)^n-5\right)\right]=+\infty\left(0-5\right)=-\infty\)
\(lim\frac{\left(n-2\right)^7\left(2n+1\right)^3}{\left(n^2+2\right)^5}=lim\frac{n^7\left(1-\frac{2}{n}\right)^7.n^3\left(2+\frac{1}{n}\right)^3}{n^{10}\left(1+\frac{2}{n^2}\right)^5}=lim\frac{\left(1-\frac{2}{n}\right)^7\left(2+\frac{1}{n}\right)^3}{\left(1+\frac{2}{n^2}\right)^5}=\frac{1.2}{1}=2\)
\(lim\frac{3^n-8.2^n-3}{3.2^n+4^n}=lim\frac{\left(\frac{3}{4}\right)^n-8\left(\frac{2}{4}\right)^n-3\left(\frac{1}{4}\right)^n}{3\left(\frac{2}{4}\right)^n+1}=\frac{0}{1}=0\)