Tìm GTNN hoặc GTLN của biểu thức
A=\(x^2-4xy+5y^2+10x-22y+2016\)
B=\(10x^2+y^2-6xy-10x+2y-2\)
C=\(2x^2+3y^2+3xy+5x-3y+4\)
D=\(x^2+5y^2+3z^2-4xy+2yz-2xz+6x-16y-20z+41\)
giải phương trình : (x2 - y2)2 = 4xy + 1
1. cho pt : \(x^2-3mx+3m-4=0\)
a/ CMR : \(\forall m\) thì pt luôn có 2 nghiệm pb
b/ Tìm m để pt có 1 nghiệm
c / cho \(x_1=\sqrt{4+2\sqrt{3}}\) tìm nghiệm x2 của pt
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
Cho Pt ẩn x
\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)
a, giải pt vs a=-3
b, giải pt vs a=1
c, xác định a để pt có no x=0,5
Ai giải hộ 4xy+x^2-xz+4y^2-2yz
4xy+x^2-xz+4y^2-2yz
4x^2-[5x-4]^2=0
x^3-6x^2+9x-4=0
giải pt sau 2x + 1 = y( x^2 + x + 1)
1. C/m pt sau vô nghiệm
x^4 - 2x^3 + 3x^2 - 2x + 1 =0
2.giải pt
(x^2-4)^2=8x + 1