Bài 1:
\(\frac{1}{x}\)+\(\frac{1}{x-1}=\frac{3}{2}\)(x khác 0, x khác 1)
(=)\(\frac{2\left(x-1\right)}{2x\left(x-1\right)}+\frac{2x}{2x\left(x-1\right)}=\frac{3x\left(x-1\right)}{2x\left(x-1\right)}\)
(=)2(x-1)+2x=3x(x-1)
(=)2x-2+2x=3x2-3x
(=)4x-2=3x2-3x
(=)4x-2-3x2+3x=0
(=)-3x2+7x-2=0
(=)-3x2+6x+x-2=0
(=)-3x(x-2)+(x-2)=0
(=)(-3x+1)(x-2)=0
(=)TH1:-3x+1=0
(=)-3x=-1
(=)x=1/3 (TMĐKXĐ)
TH2:x-2=0
(=)x=2 (TMĐKXĐ)
Vậy S={1/3;2}
Bài 2:
a)P=\(\frac{x^2}{x-1}-\frac{2x^2-x}{x^2-x}\)(x≠_+1;x≠0)
=\(\frac{x^2}{x-1}-\frac{2x^2-x}{x\left(x-1\right)}\)
=\(\frac{x^3}{x\left(x-1\right)}-\frac{2x^2-x}{x\left(x-1\right)}\)
=\(\frac{x^3-2x^2+x}{x\left(x-1\right)}\)
=\(\frac{x^3-x^2-x^2+x}{x\left(x-1\right)}\)
=\(\frac{x^2\left(x-1\right)-x\left(x-1\right)}{x\left(x-1\right)}\)
=\(\frac{\left(x-1\right)\left(x^2-x\right)}{x\left(x-1\right)}\)
=\(\frac{\left(x-1\right)x\left(x-1\right)}{x\left(x-1\right)}\)
=x-1
b)P<1
(=)P-1<0
(=)x-1-1<0
(=)x-2<0
(=)x<2
Vậy P<1 với x<2 khi x khác 0 và -1.