Lời giải:
a) Sửa đề thành CM \(\frac{a}{b}< \frac{a+m}{b+m}\) mới đúng nhé.
\(\frac{a}{b}-\frac{a+m}{b+m}=\frac{ab+am-b(a+m)}{b(b+m)}=\frac{m(a-b)}{b(m+b)}\)
Do $\frac{a}{b}< 1; b>0\Rightarrow a< b\Rightarrow a-b< 0$
$m>0; b>0\Rightarrow \frac{m}{b(m+b)}>0$
$\Rightarrow \frac{a}{b}-\frac{a+m}{b+m}=\frac{m(a-b)}{b(m+b)}< 0$
$\Rightarrow \frac{a}{b}< \frac{a+m}{b+m}$ (đpcm)
b)
\(0< B=\frac{2020^{2017+1}}{2020^{2018+1}}=\frac{2020^{2018}}{2020^{2019}}< 1\) do $0< 2020^{2018}< 2020^{2019}$
$1>0$
$\Rightarrow B< \frac{2020^{2018}+1}{2020^{2019}+1}$ (theo phần a)
Hay $B< A$