Lời giải:
Ta có:
Hàm $y$ đồng biến trên khoảng \((1;2)\) khi \(y'=9x^2+2mx+3m-2\geq 0 \forall x\in (1;2)\)
\(\Leftrightarrow m(2x+3)\geq 2-9x^2\Leftrightarrow m\geq \frac{2-9x^2}{2x+3}\) (do \(x\in (1;2)\))
Xét hàm \(f(x)=\frac{2-9x^2}{2x+3}\), đạo hàm và lập bảng biến thiên suy ra \(f(x)_{\max}< f(1)=\frac{-7}{5}\)
\(\Rightarrow m\geq \frac{-7}{5}\) là thỏa mãn.