\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+\dfrac{2}{30}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4}{5}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2}{5}=\dfrac{5-4}{10}=\dfrac{1}{10}\)
=>x+1=10
hay x=9