\(\dfrac{1}{2006.2005}+\dfrac{1}{2005.2004}+\dfrac{1}{2004.2003}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(\dfrac{1}{2006.2005}+\dfrac{1}{2005.2004}+\dfrac{1}{2004.2003}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
a) 297/16 va 306/25
b) -265/317 va -83/111
c) 2002/2003 va 14/13
d) -27/463 va -1/-3
e) -33/37 va -34/35
#giaidummktatcavoi
(1-1/2)(1-1/3)(1-1/4)...(1-1/2020)
Chứng minh rằng :
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
tính tổng S=(-1/7)^0+(-1/7)^1+(-1/7)^2+......+(-1/7)^2014
1+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+...+\(\dfrac{1}{1+2+3+...+2012}\)
Cho \(A=\left(\dfrac{2}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)So sánh A với \(-\dfrac{1}{2}\)
a)\(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\)
Chứng minh rằng: \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{97.100}< \dfrac{1}{3}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
và \(B=\frac{1}{101.200}+\frac{1}{102.199}+\frac{1}{103.198}+....+\frac{1}{200.101}\)
Chứng tỏ rằng \(\frac{2A}{B}\) là 1 số nguyên