4)2x2+3x=0
<=>2x(x+1,5)=0
có 2 nghiệm bạn nhé
4)2x2+3x=0
<=>2x(x+1,5)=0
\(< =>\left[{}\begin{matrix}2x=0\\x+1,5=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=-1,5\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm là S={0;-1,5}
4)2x2+3x=0
<=>2x(x+1,5)=0
có 2 nghiệm bạn nhé
4)2x2+3x=0
<=>2x(x+1,5)=0
\(< =>\left[{}\begin{matrix}2x=0\\x+1,5=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=-1,5\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm là S={0;-1,5}
Tìm giá trị nhỏ nhất của biểu thức A, B, C, D và giá trị lớn nhất của biểu thức E, F:
A = x2 - 4x + 1
B = 4x2 + 4x + 11
C = (x -1)(x + 3)(x + 2)(x + 6)
D = 2x2 + y2 – 2xy + 2x – 4y + 9
E = 5 - 8x - x2
F = 4x - x2 +1
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
1. Bài 1: Phân tích các đa thức thành nhân tử.
a) 5x( x-1) – 3x(x-1)
b) 9x2 + 6xy + y2
c) (x + y)2 – (x - y)2
d) x6 – y6
2. Bài 2: Tính nhanh.
a) 85.12,7 + 5,3.12,7 b) 52.143 – 52.39 – 8.26
b) 252 – 152 d) 872 + 732 – 272 – 132
3. Bài 3: Tính giá trị của biểu thức:
a) x2 + xy + x tại x = 77 và y = 22
b) x( x – y) + y(y – x) tại x = 53 và y = 3
c) x2 – 2xy – 4z2 tại x = 6 và y = -4 và z = 45
d) 3(x – 3)(x + 7) + (x – 4)2 + 48 tại x = 0,5
4. Bài 4: Tìm x biết.
a) x3 - 0,25x = 0 b) x3 - 10x = - 25
c) x2 - 2x – 3 = 0 d) 2x2 + 5x – 3 = 0
5. Bài 5: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức sau.
a) x2 + 3x + 7
b) 11 – 10x – x2
6. Bài 6: Cho a + b +c = 0 và a2 + b2 +c2 = 1. Tính giá trị của biểu thức M = a4 + b4 +c4
Câu 1: (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a). x3 – 2x2 + x b) -2x2 – 7x + 9 c) –x2 + 6x + 6y + y2
Câu 2: (1,5 điểm). Cho biểu thức: A = (3x – x2) / (x3 – x2 – 6x)
a). Rút gọn biểu thức A.
b) Tìm giá trị nguyên của x để biểu thức A có giá trị là một số nguyên.
Câu 3: (2 điểm) Tìm x, biết:
a) x2 – 5x = 0
b) n3 + xn2 – 4 chia hết cho n2 + 4n + 4 với mọi n ≠ -2
c) (1- 2x)(1 + 2x) – x(x + 2)(x – 2) = 0
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
cho 3 số dương x,y,z thảo mãn x+y+z = 2
Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{y+z}{xyz}\)
Giá trị lớn nhất của biểu thức M = 4x2/(x4 + 1) là:
Biết x + y = 2. Giá trị nhỏ nhất của biểu thức A = 3x2 + y2 là:
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy