Bài 1 :Cho các đa thức f(x) =\(2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-2\right)+\left(5x+3\right)\)
g(x)=\(-3\left(1-x^2\right)-2\left(x^2-2x-1\right)\)
a) Thu gọn các đa thức trên và sắp xếp theo luỹ thừa giảm dần của biến x
b) Tính h(x)=f(x)-g(x) và tìm nghiệm của đa thức h(x)
Bài 2 : Chứng minh rằng : Nếu a-2 = x+y thì ax+2x +ay +2y+4=\(a^2\)
Cho 2 đa thức: P(x)=3x^2+7+2x^4-3x^2-4-5x+2x^3 và Q(x)=3x^3+2x^2-x^4+x+x^3+4x-2+5x^4 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến. b) Tính P(-1) và Q(0) c) Tính G(x) = P(x) + Q(x) d) Chứng tỏ rằng đa thức G(x) luôn dương với mọi giá trị của x
1. Xác định đa thức Q(x) biết: \(Q\left(x\right)+\left(7-x^3+4x^2-x^4+x^5\right)=x^5-x^4+x^3+2x^2-3x\)
2. Tính giá trị của biểu thức: \(N=2x^4+5x^2y^2+3y^4-3y^2+2020\) khi biết \(x^2+y^2=3\)
3. Cho hai đa thức \(A=2x^{2018}-5xy+7y^2+2020\) và \(B=-x^{2018}+5xy-4y^2-2020\) . Chứng minh hai đa thức A và B không thể cùng nhận giá trị âm
cho hai đa thức c(x) = 5-8x^4+2x^3+x+5x^4+x^2-4x^3 vad d(x)=(3x^5+x^4-4x)-(4x^3-7+2x^4+3x^5.tính p(x)=c(x)+d(x),q(x)=c(x)-d(x).tìm nghiệm của f(x)=q(x)-(-2x^4+2x^3+x^2-12)
Thu gọn đa thức rồi tính giá trị của biểu thức M tại x=-2 và y =\(\dfrac{1}{2}\)
M=\(3\left(2x^3-xy^2+1\right)-4x\left(-x^2-3y^2\right)+7\)
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
2. Q(x) = \(-\frac{1}{2}\)x + 5
3. R(x) = \(\frac{2}{3}\)x + \(\frac{1}{5}\)
4. A(x) = \(\frac{1}{3}\)x + 1
5. B(x) = \(-\frac{3}{4}\)x + \(\frac{1}{3}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Câu 3: Tìm nghiệm của các đa thức sau:
1. A(x) = (2x - 4) (x + 1)
2. B(x) = (-5x + 2) (x-7)
3. C(x) = (4x - 1) (2x + 3)
4. D(x) = x2 - 5x
5. E(x) = -4x2 + 8x
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
3. h(x) = -x4 + 3x3 + 2x2 - 5x +1 tại x = -2; -1; 1; 2
4. R(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1
Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a}
\)
Cho 2 đa thức: f (x)= \(9-x^5+4x-2x^3+x^2-7x^4\)
g (x)=\(x^5-9+2x^2+7x^4+2x^3-3x\)
a) Tính tổng h (x)= f (x) + g(x)
b) Tìm nghiệm của đa thức h (x)
Cho 2 đa thức :
P(x)=\(-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\)
Q(x)=\(3x^4+3x^2-\dfrac{1}{4}-4x^3-2x^2\)
a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b) Tính P(x)+Q(x) và P(x) - Q(x)
c) Chứng tỏ x=0 là nghiệm của đa thức P(x) nhưng không là nghiệm của Q(x)
Giúp mình với ạ <3 Cảm ơn mn rất nhiều ^^