1/ \(8x^{n-1}\left(\dfrac{1}{2}x^{n+1}-\dfrac{3}{4}x\right)=4x^{2n}-6x^n\)
2/
a/ \(3x\left(2x-4\right)-2x\left(2x+5\right)=44\)
\(\Leftrightarrow6x^2-12x-4x^2-10x=44\)
\(\Leftrightarrow2x^2-22x=44\)
\(\Leftrightarrow2x^2-22x-44=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{11+\sqrt{209}}{2}\\x_2=\dfrac{11-\sqrt{209}}{2}\end{matrix}\right.\)
b/ \(x\left(5-3x\right)+3x\left(x+1\right)=40\)
\(\Leftrightarrow5x-3x^2+3x^2+3x=40\)
\(\Leftrightarrow8x=40\)
\(\Leftrightarrow x=5\)
Vậy....................