x3 + 2x2y + xy2
= x(x2 + 2xy + y2)
= x(x + y)2
x2 - xy - 4x + 4y
= x(x - y) - 4(x - y)
= (x - y)(x - 4)
1.
\(x^3+2x^2y+xy^2\\ =\left(x^3+x^2y\right)+\left(x^2y+xy^2\right)\\ =x^2\left(x+y\right)+xy\left(x+y\right)\\ =\left(x+y\right)\left(x^2+xy\right)\\ =\left(x+y\right)^2.x\)
\(x^2-xy-4x+4y\\ =\left(x^2-xy\right)-\left(4x-4y\right)\\ =x\left(x-y\right)-4\left(x-y\right)=\left(x-y\right)\left(x-4\right)\)
\(\dfrac{x-1}{x-2}+\dfrac{2x-3}{x-2}+\dfrac{x-4}{x-2}\\ =\dfrac{4x-8}{x-2}=4\)
x3+2x2y+xy2
=x(x2+2xy+y2)
= x(x+y)2
x2-xy-4x+4y
=(x2-xy)-(4x-4y)
=x(x-y)-4(x-y)
=(x-y)(x-4)
1,x\(^3\)+2x\(^2\)y+xy\(^2\)
=x(x\(^2\)+2xy+y\(^2\))
=x(x+y)\(^2\)
x\(^2\)-xy-4x+4y
=x(x-y)-4(x-y)
=(x-y)(x-4)
2,\(\dfrac{x-1}{x-2}\)+\(\dfrac{2x-3}{x-2}\)+\(\dfrac{x-4}{x-2}\)
=\(\dfrac{x-1+2x-3+x-4}{x-2}\)
=\(\dfrac{4x-8}{x-2}\)
=4