Câu 2 nek :
x2(2 − x) − x + 2 = 0
x2(2 - x) + (2 - x) = 0
(x2 +1)(2 - x) = 0
\(\Rightarrow\) \(\left[{}\begin{matrix}2-x=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\) \(\left[{}\begin{matrix}x=2\\x=\sqrt{-1}\end{matrix}\right.\)
Chúc bn học tốt
a) \(2x^2-6x=2x\left(x-3\right)\)
b) \(x^2-y^2-3x+3y=\left(x^2-y^2\right)-\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
c) \(x^2+2xy+y^2-9z^2=\left(x+y\right)^2-\left(3z\right)^2\)
\(=\left(x+y-3z\right)\left(x+y+3z\right)\)
d) \(2x^2-5x-3=2x^2-2x+3x-3\)
\(=\left(2x^2-2x\right)+\left(3x-3\right)\)
\(=2x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(2x+3\right)\left(x-1\right)\)
e) \(2x^2+2xy=2x\left(x+y\right)\)
g) \(x^2-x-6=x^2-3x+2x-6\)
= \(\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x+2\right)\left(x-3\right)\)
Bài 2: \(x^2\left(2-x\right)-x+2=0\)
\(x^2\left(2-x\right)+\left(2-x\right)=0\)
\(\left(x^2+1\right)\left(2-x\right)=0\)
=> \(x^2+1=0hay2-x=0\)
=> x không tồn tại hay x = 2
=> x = 2