\(\dfrac{1}{x-1}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{1}{x-1}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
1) Ket qua khi rut gon phan thuc \(\dfrac{x^2+2x+1}{x^3+1}\) la:
1) Thuc hien phep tinh cong 2 phan thuc \(\dfrac{2x}{x^2-2x+1}+\dfrac{x+1}{x-1}\) duoc ket qua la:
A. \(\dfrac{x^2+2x+1}{\left(x-1\right)^2}\) B. \(\dfrac{x^2+2x-1}{\left(x-1\right)^2}\) C. \(\dfrac{x^2-x-1}{\left(x-1\right)^2}\) D. \(\dfrac{x^2-2x-1}{\left(x-1\right)^2}\)
1) Theo tinh chat phan thuc thi 2 phan thuc nao sau day bang nhau
A. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^4y^2}{12x^2}\)
B. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x^2}\)
C. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x}\)
D. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x^2y}\)
1) Dieu kien cua x de phan thuc \(\dfrac{2x^3y^5}{5\left(x-2\right)^2}\) co nghia la
A. x ≠ 2 B. x ≠ -2
C. x = -2 D. x = 2
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, n>1; ta có: \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}>\dfrac{13}{24}\)
Chứng minh rằng với \(n\in N^{\circledast}\), ta có các đẳng thức :
a) \(2+5+8+.....+3n-1=\dfrac{n\left(3n+1\right)}{2}\)
b) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{2^n}=\dfrac{2^n-1}{2^n}\)
c) \(1^2+2^2+3^2+....+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
1) Tai sao \(\dfrac{1}{2^{k+1}}=\dfrac{1}{2^k.2}\)
Cho tổng :
\(S_n=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+....+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)
a) Tính \(S_1,S_2,S_3,S_4\)
b) Dự đoán công thức tính \(S_n\) và chứng minh bằng phương pháp quy nạp
Cho tổng \(S_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{n\left(n+1\right)}\) với \(n\in N^{\circledast}\) ?
a) Tính \(S_1,S_2,S_3\) ?
b) Dự đoán công thức tỉnh tổng \(S_n\) và chứng minh bằng quy nạp