Bài 2: Tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan thu trang

1) \(\int ln\frac{\left(1+s\text{inx}\right)^{1+c\text{os}x}}{1+c\text{os}x}dx\)

2) \(\int\left(xlnx\right)^2dx\)

3) \(\int\frac{3xcosx+2}{1+cot^2x}dx\)

4)\(\int\frac{2}{c\text{os}2x-7}dx\)

5)\(\int\frac{1+x\left(2lnx-1\right)}{x\left(x+1\right)^2}dx\)

6) \(\int\frac{1-x^2}{\left(1+x^2\right)^2}dx\)

7)\(\int e^x\frac{1+s\text{inx}}{1+c\text{os}x}dx\)

8) \(\int ln\left(\frac{x+1}{x-1}\right)dx\)

9)\(\int\frac{xln\left(1+x\right)}{\left(1+x^2\right)^2}dx\)

10) \(\int\frac{ln\left(x-1\right)}{\left(x-1\right)^4}dx\)

11)\(\int\frac{x^3lnx}{\sqrt{x^2+1}}dx\)

12)\(\int\frac{xe^x}{_{ }\left(e^x+1\right)^2}dx\)

13) \(\int\frac{xln\left(x+\sqrt{1+x^2}\right)}{x+\sqrt{1+x^2}}dx\)

giúp mk đc con nào thì giúp nha

Akai Haruma
8 tháng 2 2017 lúc 21:25

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

Akai Haruma
8 tháng 2 2017 lúc 23:38

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

Akai Haruma
9 tháng 2 2017 lúc 0:58

Câu 6)

\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)

Câu 8)

\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)

\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\) ta có:

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)

\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)

\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)

Akai Haruma
9 tháng 2 2017 lúc 1:43

Câu 5)

\(I=\int \frac{1+x(2\ln x-1)}{x(x+1)^2}dx=\int \frac{dx}{x(x+1)^2}-\int \frac{dx}{(x+1)^2}+\int \frac{2\ln xdx}{(x+1)^2}\)

\(=\int \left ( \frac{1}{x}-\frac{1}{x+1}-\frac{1}{(x+1)^2} \right )dx+\int \frac{2\ln xdx}{(x+1)^2}-\int \frac{dx}{(x+1)^2}\)

\(\Leftrightarrow I=\ln|x|-\ln|x+1|+\frac{2}{x+1}+\int \frac{2\ln x dx}{(x+1)^2}+c\)

Đối với \(\int \frac{2\ln x}{(x+1)^2}dx\), ta đặt \(\left\{\begin{matrix} u=\ln x\\ dv=\frac{dx}{(x+1)^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ v=\frac{-1}{x+1}\end{matrix}\right.\)

\( \Rightarrow \int \frac{2\ln xdx}{(x+1)^2}=\frac{-2\ln x}{x+1}+\int \frac{1}{x(x+1)}dx=\frac{-2\ln x}{x+1}+2\ln |x|-2\ln|x+1|+c\)

\(\Rightarrow I=3\ln |x|-3\ln|x+1|+\frac{2}{x+1}-\frac{2\ln x}{x+1}+c\)

Akai Haruma
9 tháng 2 2017 lúc 13:46

Lời giải

Đặt \(x=2t\). Biến đổi ta có:

\(I=\int e^{2t}\frac{(\sin t+\cos t)^2}{\cos^2t}dt=\int e^{2t}(\tan t+1)^2dt\)

\(\Leftrightarrow I=\int e^{2t}\tan^2t dt+2\int e^{2t}\tan tdt+\int e^{2t}dt\)

Đặt \(\left\{\begin{matrix} u=e^{2t}\\ dv=\tan^2tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2e^{2t}dt\\ v=\int \tan^2tdt=\int \frac{1-\cos^2t}{\cos^2t}dt=\tan t-t\end{matrix}\right.\)

\(\Rightarrow I=e^{2t}(\tan t-t)-2\int (\tan t-t)e^{2t}dt+2\int e^{2t}\tan tdt+\int e^{2t}dt\)

\(\Leftrightarrow I=e^{2t}(\tan t-t)+2\int e^{2t}tdt+\int e^{2t}dt\)

Đặt \(\left\{\begin{matrix} k=t\\ dl=e^{2t}dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=dt\\ l=\int e^{2t}dt=\frac{e^{2t}}{2}\end{matrix}\right.\)

\(\Rightarrow I=e^{2t}(\tan t-t)+te^{2t}-\int e^{2t}dt+\int e^{2t}dt\)

Hay \(I=e^{2t}\tan t+c=e^x\tan \frac{x}{2}+c\)

Akai Haruma
9 tháng 2 2017 lúc 14:31

Câu 11)

\(I=\int \frac{x^3\ln x}{\sqrt{x^2+1}}=\int \frac{x^2\ln (x^2)d(x^2)}{4\sqrt{x^2+1}}\). Đặt \(\sqrt{x^2+1}=t\rightarrow x^2=t^2-1\).

Khi đó \(I=\int \frac{(t^2-1)\ln(t^2-1)d(t^2-1)}{4t}=\frac{1}{2}\int (t^2-1)\ln (t^2-1)dt\)

Đặt \(\left\{\begin{matrix} u=\ln (t^2-1)\\ dv=(t^2-1)dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2t}{t^2-1}dt\\ v=\frac{t^3}{3}-t\end{matrix}\right.\)

\(\Rightarrow 2I=\ln (t^2-1)\left(\frac{t^3}{3}-t\right)-2\int \left(\frac{t^3}{3}-t\right)\frac{t}{t^2-1}dt\)

Đối với \(\int \frac{t^4}{t^2-1}dt\)

\(\int \frac{t^4}{t^2-1}dt=\int (t^2+1+\frac{1}{t^2-1})dt=\frac{t^3}{3}+t+\frac{\ln|t-1|-\ln|t+1|}{2}+c\)

Đối với \(\int \frac{t^2}{t^2-1}dt\)

\(\int \frac{t^2}{t^2-1}dt=\int (1+\frac{1}{t^2-1})dt=t+\frac{\ln|t-1|-\ln|t+1|}{2}+c\)

Do đó mà \(I=\frac{1}{2}\left[\left(\frac{t^3}{3}-t\right)\ln (t^2-1)-\frac{2t^3}{9}+\frac{4t}{3}+\frac{2(\ln|t-1|-\ln|t+1|)}{3}\right]+c\)

Akai Haruma
9 tháng 2 2017 lúc 19:38

Câu 10.

Đặt \(x-1=t\Rightarrow I=\int \frac{\ln t}{t^4}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^4}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{3t^3}\end{matrix}\right.\Rightarrow I=\frac{-\ln t}{3t^3}+\int \frac{dt}{3t^4}=\frac{-\ln t}{3t^3}-\frac{1}{9t^3}+c\)

Câu 12)

Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{e^x}{(e^x+1)^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int \frac{e^x}{(e^x+1)^2}dx=\int\frac{d(e^x+1)}{(e^x+1)^2}=-\frac{1}{e^x+1}\end{matrix}\right.\)

\(\Rightarrow I=\frac{-x}{e^x+1}+\int \frac{dx}{e^x+1}=\frac{-x}{e^x+1}+\int \frac{d(e^x)}{e^x(e^x+1)}=\frac{-x}{e^x+1}+\ln|e^x|-\ln|e^x+1|+c\)

Hay \(I=\frac{xe^x}{e^x+1}-\ln|e^x+1|+c\)

Akai Haruma
9 tháng 2 2017 lúc 20:00

Câu 3)

\(I=\int \frac{3x\cos x+2}{1+\cot ^2x}dx=\int (3x\cos x+2)\sin^2xdx=3\int x\cos x\sin^2xdx+2\int sin^2xdx \)

Ta có:

\(2\int \sin^2xdx=\int (1-\cos 2x)dx=x-\frac{\sin 2x}{2}+c\)

Đối với \(3\int x\cos x\sin^2xdx\): Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos x\sin^2xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int \sin^2xd(\sin x)=\frac{\sin^3x}{3}\end{matrix}\right.\)

\(\Rightarrow 3\int x\cos x\sin^2xdx=x\sin^3x-\int \sin^3xdx=x\sin^3x-\int \frac{3\sin x-\sin 3x}{4}dx\)

\(=x\sin^3x+\frac{3}{4}\cos x-\frac{\cos 3x}{12}+c\)

Nguyễn Hoàng Việt
9 tháng 2 2017 lúc 22:31

Akai ơi, bà cho tôi giải ké 1 câu với :)))

1)

\(ln\frac{\left(1+sinx\right)^{1+cosx}}{1+cosx}\\ =\left(1+cosx\right)ln\left(1+sinx\right)-ln\left(1+cosx\right)\\ =\left[ln\left(1+sinx\right)-ln\left(1+cosx\right)\right]+cosx\cdot ln\left(1+sinx\right)\\ =ln\frac{1+sinx}{1+cosx}+cosx\cdot ln\left(1+sinx\right)\)

Ta có: \(I=\int ln\frac{1+sinx}{1+cosx}dx+\int cosx\cdot ln\left(1+sinx\right)dx\)

+) \(B=\int cosx\cdot ln\left(1+sinx\right)dx\\ =\int ln\left(1+sinx\right)d\left(1+sinx\right)=\int ln\left(t\right)dt=...\)

+) \(A=\int ln\frac{1+sinx}{1+cosx}dx\)

Đặt: \(f\left(x\right)=\frac{1+sinx}{1+cosx}\Rightarrow f\left(t\right)=\frac{1+sint}{1+cost}\)

Hoàn toàn có thể đặt: \(f\left(x\right)=e^{f\left(t\right)}\)

Đạo hàm 2 vế ta có: \(f'\left(x\right)dx=e^{f\left(t\right)}.e^t.dt\)

Ta có: \(A=\int ln\left(e^{f\left(t\right)}\right).e^t.dt=\int e^t.f\left(t\right)dt=\int e^t.\frac{1+sint}{1+cost}dt\)

(đến đây thì làm giống câu 7 thôi)

Đồng Xuân Phước
17 tháng 2 2017 lúc 8:23

em chịu

humohooe

Dương Lê
22 tháng 2 2017 lúc 20:32

cc cc ko hiểu j cả ngu vkl!


Các câu hỏi tương tự
Phan thu trang
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
Trần Thị Bảo Ngọc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hùng
Xem chi tiết
Hùng
Xem chi tiết
Nguyễn Đình Đức
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết