Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+2y^2+xy^2=2+x-2x^2\\4y^2=\left(\sqrt{y^2+1}+1\right)\left(y^2-x^3+3x-2\right)\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}8\left(x^3-1\right)+6xy^2=y\left(12x^2+y^2\right)\\\left(x^2+y-4x\right)\left(x^2-y^2-2x-5\right)=14\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}y=2\sqrt{x-1}\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}xy-\dfrac{x}{y}=9.6\\xy-\dfrac{y}{x}=7.5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
Giải các hệ PT sau bằng phương pháp cộng đại số
a)\(\left\{{}\begin{matrix}\text{3x-2y=1}\\\text{ 2x+4y=3}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\text{4x-3y=1}\\\text{ -x+2y=1}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\)
giải hệ 1 \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}xy-x-y=5\\yz-y-z=11\\zx-z-x=7\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\\y^2+xy-yz+z^2=0\\x^2-xy-xz-z^2=2\end{matrix}\right.\)
a, Giải phương trình : \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
b, Giải hệ phương trình :\(\left\{{}\begin{matrix}x^2-x+y^2-2y=19\\xy\left(x-1\right)\left(2-y\right)=20\end{matrix}\right.\)
giải hệ: a, \(\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt[]{x-1}+\sqrt[]{y-1}=2\\\frac{1}{x}+\frac{1}{y}=1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x\sqrt[]{x}+y\sqrt[]{y}=35\\x\sqrt[]{y}+y\sqrt[]{x}=30\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)