a) \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Đặt \(x^2+7=a\) . Thay vào PT ta được:
\(a+4x=\left(x+4\right)\sqrt{a}\)
<=> \(a+4x-x\sqrt{a}-4\sqrt{a}=0\)
<=> \(\sqrt{a}\left(\sqrt{a}-x\right)-4\left(\sqrt{a}-x\right)=0\)
<=> \(\left(\sqrt{a}-x\right)\left(\sqrt{a}-4\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt{a}=x\\\sqrt{a}=4\end{matrix}\right.\) <=> \(\sqrt{a}=4\) ( Do \(\sqrt{a}=x\) vô nghiệm)
=> a = 16
=> \(x^2+7=16\) => \(x^2=9=>x=\pm3\)
Vậy nghiệm của PT: S = \(\left\{3;-3\right\}\)
P/s: Sai đừng trách nha!
Đặt x(x-1) = a
y (y-2) = b
=> HPT : a+b =19
ab = -20
=>a;b la nghiệm của pt: X2 -19X-20 =0=> X=-1 hoặc X=20
+ a= -1 ; b =20 =>\(\left\{{}\begin{matrix}x\left(x-1\right)=-1\\y\left(y-2\right)=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-x+1=0\left(vo..nghiem\right)\\\end{matrix}\right.\)( loại)
+ a =20; b =-1 => \(\left\{{}\begin{matrix}x\left(x-1\right)=20\\y\left(y-2\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-x-20=0\\y^2-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\\y=1\end{matrix}\right.\)
Vậy HPT có tập nghiệm : S= {(5;1); ( -4;1)}