1) Giải bất phương trình sau:
a) \(x^2+\sqrt{x+11}=11\) b) \(9+\sqrt{9+x}=x\)
2) Xét dấu:
a) \(f\left(x\right)=\frac{\left(x^2-1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x^2-5x+4\right)}\) b) \(h\left(x\right)=\frac{1}{x^2-2x+3}-\frac{1}{x+2}\)
Giải các bất phương trình sau: a)/x+2/>3 b)(x+3)(x^2-5x+6)>0 c)/3x+4/0
bài 1 giải các bất phương trình sau
a, -x2 +5x-6 ≥ 0
b, x2-12x +36≤0
c, -2x2 +4x-2≤0
d, x2 -2|x-3| +3x ≥ 0
e, x-|x+3| -10 ≤0
bài 2 xét dấu các biểu thức sau
a,<-x2+x-1> <6x2 -5x+1>
b, x2-x-2/ -x2+3x+4
c, x2-5x +2
d, x-< x2-x+6 /-x2 +3x+4 >
Giải các bất phương trình
a) \(x+2\le\sqrt[3]{x^3+8}\)
b)\(\sqrt{\dfrac{1}{x^2}-\dfrac{3}{4}}< \dfrac{1}{x}-\dfrac{1}{2}\)
Giải bất phương trình sau (giúp mình với)
\(\frac{\sqrt{-x^2+2x+3}}{3x+6}\ge\frac{\sqrt{-x^2+2x+3}}{x-5}\)
4. Dấu của tam thức bậc hai
Bài 5: Giải các bất phương trình sau:
a.2x\(^2\) - 5x + 2 < 0 b. -5x\(^2\) + 4x + 12 <0 c. 16x\(^2\) + 40x + 25 >0
d. -2x\(^2\) + 3x - 7\(\ge\)0 e. 3x\(^2\) - 4x + 4 \(\ge\) 0 f. x\(^2\) - x - 6\(\le\) 0
g. \(\frac{-3x^2-x+4}{x^2+3x+5}\) > 0 h. \(\frac{x-1}{x^2-4}\) - \(\frac{2}{x+2}\) > \(\frac{1}{x-2}\) i. \(\frac{8}{x^2-9}+\frac{3}{x+3}< \frac{2}{x-3}\)
j. \(2x^2-\left|5x-3\right|< 0\) k. \(x-8>\left|x^2+3x-4\right|\) l. \(\left|x^2-1\right|-2x< 0\)
m. \(\sqrt{4-x}>2+x\) n. \(\sqrt{9-x}-3>x\)
Câu 1: Tìm tập nghiệm của bất phương trình: x2 + (\(\sqrt{3}+\sqrt{2}\))x + \(\sqrt{6}\) ≤ 0
Câu 2: Cặp bất phương trình nào sau đây không tương đương? Giải thích?
A. x + 1 > 0 và x + 1 + \(\frac{1}{x^2+1}\) > \(\frac{1}{x^2+1}\)
B. 2x - 1 + \(\frac{1}{x-3}\) > \(\frac{1}{x-3}\) và 2x - 1 > 0
C. -4 + 1 > 0 và 4x - 1 < 0
D. 2x2 + 5 ≤ 2x - 1 và 2x2 - 2x + 6 ≤ 0
Câu 3: Với x thuộc tập hợp nào thì đa thức f(x) = x(x - 6) + 5 - 2x - (10 + x(x - 8)) luôn dương?
Giải các bất phương trình sau
a \(\frac{x^3-2x^2+4x}{-x^2+x+12}>0\)
b \(\frac{4x-3}{x-2}>7-\frac{3x-4}{x+3}\)
c \(\frac{\left(3-x\right)\left(x^2-4x+4\right)}{x^3-x}\le0\)
d \(\frac{2x-3}{3x+5}< \frac{3x+5}{2x-3}\)
e \(\frac{3x+2}{\left(x+1\right)\left(x+2\right)}\ge1\)
f \(\frac{x^3-3}{x^2-1}\ge3\)