1/Chứng tỏ rằng
a,\(n^3\) - n \(⋮\) 6
Ta có : \(n^3\) -n =n.(\(n^2\) -1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Vì n-1 , n , n+1 là 3 số hạng liên tiếp
\(\Rightarrow\) (n-1).n.(n+1)\(⋮\) 3 (1)
Lại có : n-1, n là 2 số hạng liên tiếp
=> (n-1).n \(⋮\) 2
=> (n-1) .n.(n+1) \(⋮\) 2 (2)
Từ (1) và (2) ta thấy:
(n-1).n.(n+1) \(⋮\) 2,3 mà (2,3) =1
=(n-1) .n.(n+1)\(⋮\) 6 (đpcm)
Vậy \(n^3\) -n \(⋮\) 6
b, Ta có : S= 1-3+3^2-3^3+. . . +3^98-3^99
S= (1-3+3^2-3^3) + . . . +(3^96-3^97 + 3^98-3^99)
S= (-20).1 + . . . + 3^96 . (-20)
S= (-20) . ( 1+ . . . + 3^96) \(⋮\) 20 ( đpcm)
c, Vì 6x + 11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31
=> 6x+ 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà ( 6,1) = 1 nên x+7y chia hết cho 31 (đpcm)